+92 51 90852137 osman.hasan@seecs.edu.pk Visit Us

Automated Tele-Micromanipulator Cell Injection System

A cell microinjection system is a widely used tool in the domain of cell biology and it allows us to deliver a specific amount of substance into a cell using a fine tipped needle (or a microinjection pipette) under the observation of a microscope. Cell microinjection systems are widely used for delivering drugs to a single cell for the treatment of diseases, like Cancer, Alzheimer’s, Sickle cell anemia and Cystic fibrosis etc, developing organs, like heart, lungs and kidney, and in-vitro fertilization (commonly known as test tube babies).

The cost of most commercially available microinjection systems is in the range of hundreds of thousands of dollars, which makes their purchase and usage in developing countries like Pakistan very rare. This is one of the biggest reasons for the limited amount of research done in the areas of cell biology, Genetic engineering, transgenetics and cloning, in the developing nations. As a first step towards overcoming this limitation, the team of the proposed project has developed a manual microinjection system, which can be manipulated by humans using various knobs under the microscope to perform cell injections. However, the manual nature of analysis makes the injection process very time consuming and error-prone. In this proposal, we are seeking funds to overcome these problems.

The project has three main development objectives: (i) Develop a virtual reality simulator along with a joystick like manipulator for training scientists to use the already developed manual microinjection system. This training is expected to lower the human-error rates in the cell injection process and thus would make the already developed system, which costs less than 100$, a feasible option for many scientists in Pakistan and other developing nations. (ii) Our next objective is to upgrade the manual cell injection system to a semi-automatic cell injection system, where the operator of the system can view the cells on his computer screen and perform the injection process via a joystick like manipulator, which is in turn controlling motors to perform the actual cell injection. This system increases the reliability of the process and also makes the whole procedure more comfortable for the operator. (iii) Our third objective is to capitalize on the strong broadband connection system in Pakistan and provide remote access to the microinjection system. This way, remote users just require the manipulator of the system and our software and then can perform their experiments at a central lab, where the real microinjection system is available. This kind of access would provide a very economical way of conducting state-of-the-art research to the molecular biology scientists of Pakistan.

Besides the above-mentioned development objectives, we also plan to investigate the usage of formal methods, i.e., a computer-based mathematical analysis approach for analyzing the functional correctness and performance aspects of the proposed cell microinjection systems. In this context, we plan to use the two main stream formal methods, i.e., theorem proving and model checking to analyze the most safety-critical aspects of the hardware and software components of the proposed system.

The development of the proposed microinjection system will involve a combination of hardware and software systems, utilizing skills and techniques in areas of robotics, telecommunication, computer game development and control systems. The simulator will be developed using open source technology used in game development, while the hardware of the system will be developed using parts that are easily available off the shelf. This will be an integration of different technologies in the area of robotics and software development. One of its advantages will be its user-friendly application software and it’s easy to use hardware controls.

The team of this proposal comprises of Dr. Osman Hasan (PI) and Dr. Saad Qaisar (Co-PI) from National University of Sciences and Technology (NUST). Dr. Hasan has a PhD in design and analysis of safety-critical systems and has developed numerous e-health related hardware and software based applications. Dr. Hasan would mainly look after the software, hardware and mechanical design of this project. Dr. Qaiser specializes in the domains of telecommunication and sensors and he would be mainly utilizing his experiences in developing the remote operation and sensor based control of the semi-automatic system. Dr. Jalal has a PhD in the area of molecular biology and he would be providing his feedback regarding the proposed tools and testing them with real-world experiments.

A cost-effective and locally developed microinjection system can bring about a revolution in the health care sector in not only Pakistan but also in most developing countries of the world. The proposal involves a marketing consultant from Bitsym to professionally chalk out marketing plans for the developed tools. The main value proposition of this proposal is that by creating synergy between knowledge of expert biologists, expert computer engineers and low cost hardware components created for video gaming industry extremely valuable microinjection systems can be created in the short term. This expertise can be further nurtured to develop high quality cell biology training systems in Pakistan at low cost and deploy these systems throughout Pakistan. Thus creating an ecosystem that improves healthcare while generating significant R&D activities, foster innovation, create job opportunities and lead to wealth generation.